33
Soil Microorganisms and Nematodes for Bioremediation and Amelioration
Gulan, L., Biljana, M., Tijana, Z., Gordana, M., & Biljana, V., (2017). Persistent organic
pollutants, heavy metals and radioactivity in the urban soil of Priština City, Kosovo and
Metohija. Chemosphere, 171, 415–426. Elsevier.
Guo, H., Shenglian, L., Liang, C., Xiao, X., Qiang, X., Wanzhi, W., Guangming, Z., et
al., (2010). Bioremediation of heavy metals by growing hyperaccumulator endophytic
bacterium Bacillus Sp. L14. Bioresource Technology, 101(22), 8599–8605. Elsevier. doi:
10.1016/j.biortech.2010.06.085.
Haghollahi, A., Mohammad, H. F., & Mahin, S., (2016). The effect of soil type on the
bioremediation of petroleum contaminated soils. Journal of Environmental Management,
180, 197–201. Elsevier.
Harekrushna, S., & Das, C. K., (2012). A review on: Bioremediation. International Journal of
Research in Chemistry and Environment, 2(1), 13–21.
Harrington, A. J., Talene, A. Y., Sunny, R. S., Kim, A. C., & Guy, A. C., (2012). Functional
analysis of VPS41-mediated neuroprotection in Caenorhabditis elegans and mammalian
models of Parkinson’s disease. Journal of Neuroscience, 32(6), 2142–2153. Soc
Neuroscience.
He, L., Huan, Z., Guangxia, L., Zhongmin, D., Philip, C. B., & Jianming, X., (2019).
Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks
and applications in China. Environmental Pollution, 252, 846–855. Elsevier. doi: 10.1016/j.
envpol.2019.05.151.
Hooda, V., (2007). Phytoremediation of toxic metals from soil and wastewater. Journal of
Environmental Biology, 28(2), 367. Citeseer.
Hrács, K., Zoltán, S., Anikó, S., Lola, V. K., Ibolya, Z. P., Ákos, K., Gyula, Z., & Péter, N.,
(2018). Toxicity and uptake of nanoparticulate and bulk ZnO in nematodes with different life
strategies. Ecotoxicology, 27(8), 1058–1068. Springer. doi: 10.1007/s10646-018-1959-8.
Huang, D., Wenjing, X., Guangming, Z., Jia, W., Guomin, C., Chao, H., Chen, Z., et al.,
(2016). Immobilization of Cd in river sediments by sodium alginate modified nanoscale
zero-valent iron: Impact on enzyme activities and microbial community diversity. Water
Research, 106, 15–25. Pergamon. doi: 10.1016/j.watres.2016.09.050.
Huang, G. H., Feng, C., Dong, W., Xue, W. Z., & Gu, C., (2010). biodiesel production
by microalgal biotechnology. Applied Energy, 87(1), 38–46. Elsevier. doi: 10.1016/j.
apenergy.2009.06.016.
Huo, W., Chun, H. Z., Ya, C., Meng, P., Hui, Y., Lai, Q. L., & Qing, S. C., (2012). Paclobutrazol
and plant-growth promoting bacterial endophyte Pantoea Sp. enhance copper tolerance of
guinea grass (panicum maximum) in hydroponic culture. Acta Physiologiae Plantarum,
34(1), 139–150. Springer. doi: 10.1007/s11738-011-0812-y.
Hurlbert, S. H., (1971). the nonconcept of species diversity: A critique and alternative
parameters. Ecology, 52(4), 577–586. John Wiley & Sons, Ltd. doi: 10.2307/1934145.
Hyman, M., & Ryan, D. R., (2001). Groundwater and Soil Remediation. American Society of
Civil Engineers. doi: 10.1061/9780784404270.
Jabeen, H., Samina, I., Fiaz, A., Muhammad, A., & Sadiqa, F., (2016). Enhanced remediation
of chlorpyrifos by ryegrass (Lolium multiflorum) and a chlorpyrifos degrading bacterial
endophyte Mezorhizobium Sp. HN3. International Journal of Phytoremediation, 18(2),
126–133. Taylor & Francis. doi: 10.1080/15226514.2015.1073666.
Jaganathan, D., Karthikeyan, R., Gothandapani, S., Shilpha, J., & Gayatri, V., (2018). CRISPR
for crop improvement: An update review. Frontiers in Plant Science. Frontiers media S.A.
doi: 10.3389/fpls.2018.00985.